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Abstract

A fundamental problem in the analysis of relational data, such as
graphs and networks, is to extract a common structure that underlies the
relationships between individual entities. In this paper, we emphasize on
the probabilistic connectivity pattern between communities and shed the
light on the potential of applying Szemeredi’s regularity lemma to com-
munity detection, feature extraction, and link prediction on large graphs.
In particular, we first give theoretical guarantee of community detection
via ε-regular partitions for sample graph generated by stochastic block
models under mild assumptions. Thereby, we show that regularity based
clustering effectively captures the probabilistic connectivity pattern. Fur-
thermore, under the assumption of latent feature induces connectivity,
we show that the principal components of the covariance matrix gener-
ated by element-wise mean in the regular partition are close to for latent
features when vertex data is polluted by i.i.d. noise. Therefore, we pro-
pose: (1) a latent feature extraction algorithm which finds the principal
components of the elements in a regular partition, and (2) a link predic-
tion method that uses the maximum-likelihood method to find an optimal
sample graph embedding on the data subspace spanned by the extracted
latent features.
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1 Introduction

A fundamental problem in the analysis of relational data is to recognize the
a common structure that contributes to the formation of connections between
individual entities. In particular, pattern recognition and community detection
for graphs have been studied in various areas such as social behavior (Fortunato,
2010; Hoffman, 2018), finance (Bartesaghi, 2019), and image segmentation (Shi
et al., 2002). Here, graph is a mathematical description of the relationships.
For instance, a Facebook networked data regards every account as a vertex at-
tached with a high-dimensional feature vector, and each edge as the friendship
connection between two accounts. For relational data structure recognition, the
essential importance is to understand the mechanism between the feature vec-
tors attached to vertices and the observed relationships in between. In short,
the main challenge is to develop a method that extracts the relationship between
the vertex data and the edge data. One major step is to cluster vertices that
share similar connectivity characteristics, and thereby make analysis of the rela-
tionship available. Various works have been done in this direction: community
detection (Abbe, 2015), and recovery of stochastic block model (Abbe et al.,
2016; Ling et al., 2020). The main method used in the above works is spectral
clustering. For example, Abbe and Bandeira used spectral method to study the
recovery of the two-community stochastic block model G(n, p, q) with p > q,
which is also known as the planted bisection model, by reducing the community
detection problem to a min-cut problem. Results for multi-community detec-
tion with inner-connection p and inter-connection q is also given in (Agarwal et
al., 2017). Despite the successes above, the spectral method is not efficient in
community detection for general SBMs with complex inner and inter connection
densities. Because more complex probability matrix in SBMs hinders the prob-
lem reduction from community detection to min-cut or bottleneck problems, for
which the method is designed.

In contrast, Szemeredi’s regularity lemma (Szemeredi, 1978), which states that
every large enough dense graph could be well-approximated by a random graph,
is designed to check the probabilistic pattern on graphs and give us a different
solution to connectivity pattern based clustering problem. In the original paper,
Szemeredi uses regularity between clusters to check to whether enough random-
ness pattern exists between clusters, generates finer partition on the irregular
clusters, and terminates the process until the partitioned graph is close to the
original graph, where the closeness is quantified by the index of partition. Al-
though the lemma has become a fundamental tool in graph theory, theoretical
computer science, and combinatorics, limited works have applied the lemma
to data analysis, not to mention community detection and feature extraction.
One reason is the worst case upper bound of partition cardinality grows as
an exponential tower with height equal to some power of ε−1 (Gowers, 1997).
Therefore, exact ε-regular partition is not practical in reality. More recently,
(Sperotto, 2007; Peillilo, 2017, Fionacci, 2020) showed approximate ε-partition
is efficient in graph pattern recognition and image segmentation purpose.

2



In this paper, we apply the Szemeredi ε-regular partition as a black box to
solve community detection, relative features extraction, and edge prediction. In
particular, we show ε-regular partition is efficient in clustering vertices for com-
munity detection purpose. By using graphs generated by symmetric stochastic
block models (SSBM) as a benchmark for theoretical analysis and experiments,
we first show a theoretical guarantee of community detection and recovery of
SSBM via regular partitions on sample graphs under mild assumptions, then use
the elements of the regular partition to extract relative features to the random
graph pattern, and finally apply the extracted feature to embed the graph onto
the feature data space for link prediction purpose. In short, this paper first
provides theoretical guarantee for community detection via ε-regular partition,
then use the partition to extract features, and finally use the extracted features
to generate a graph embedding on the feature vector space for link prediction.

The rest of the paper is organized as follows: section 2 shows that a regular
partition gives a good summery SSBM for any sample graph by proving the
closeness between any graph generated by the SSBM and the original graph
on the graphon space. Section 3 gives a theoretical performance guarantee of
community detection for ε-regular partitions by applying graphs generated by
SSBM as a benchmark. Moreover, the recovery of SSBM is shown to be closely
connected to estimation of graphons. Section 4 proposes two algorithms for
feature extraction via regular partitions and graph embedding on the extracted
feature data space respectively. Finally, section 5 gives numerical experiments
on the community detection, feature extraction, and link prediction.

2 An Encoder for Dense Graphs

In this section, we give an estimation result on the pattern recognition accuracy
for ε-regular partitions. For any unknown graph G, let Gs be a sample graph
generated under uniform sampling. We prove that, with high probability, the
random graph model W s generated by an ε-regular partition on Gs gives an
accurate pattern summary for not only Gs but also G. We need the estimation
result because, if the connectivity pattern summarized by W s differs signifi-
cantly or with high probability from the one on G, then there is no ground for
further study in community detection, feature extraction, and link prediction
based on W s.

In the rest of the section, we first state two versions of regularity lemma, then
follow the procedure:

G
sampling−−−−−→ Gs

regular partition−−−−−−−−−−→W s blow-up/lifting−−−−−−−−−→ G̃.

Here, sampling and regular partition is analogous to encoding, W s is analogous
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to feature, and blow-up/lifting to decoding.

The aim is to show G̃, which is the graph recovered from the ε-partition gen-
erated random graph model W s, is close to G, the original graph, under mild
assumptions. The closeness is quantified by the cut distance on the graphon
space (W, δ�), where W := {w : [0, 1]2 → [0, 1]| be borel-measurable} and the
cut distance δ� is defined as the following: for any w1, w2 ∈ W,

δ�(w1, w2) := inf
φ∈S([0,1])

||w1 − wφ2 ||�,

where S([0, 1]) denotes all the measure preserving maps from [0, 1] to [0, 1],

wφ2 (x, y) := w2(φ(x), φ(y)), and

||w1 − w2||� := sup
S,T⊂[0,1]

|
∫
S×T

w1(x, y)− w2(x, y)dxdy|.

Intuitively, δ�(G1, G2) := δ�(wG1
, wG2

), where wGi denotes the normalized ad-
jacency matrix to [0, 1]× [0, 1].

Cut distance is a natural quantification of the difference between dense unla-
beled graphs, we refer interested readers to (Lovasz, 2016) for detailed explana-
tion and justification.

To prove the closeness between G and G̃ on the graphon space, we need to first
state the two versions of regularity lemma.

Lemma 1 (Szemeredi’s Regularity Lemma). For arbitrarily fixed ε > 0 and
integer m > 0, there exists P (ε,m) and Q(ε,m) such that: every graph G =
(V,E) with n = |V | > P has a partition P = {Pi}ki=1 on V which satisfies

• m ≤ k ≤ Q

• |Pi| ∈ {bnk c, b
n
k c+ 1}

• All but εk2 pairs of (Pi, Pj)’s are ε-regular

Intuitively, the lemma states that every large enough dense graph can be well-
approximate by a random graph model. Frieze and Kannan offered a more
computationally friendly version below.

Lemma 2 (Frieze and Kannan’s Regularity Lemma). For any graph G = (V,E)
with |V | = n sufficiently large, and ε > 0, we can construct in time Õ(ε−2)n a
partition P of V which satisfies

• |P| < k, log k = O(ε−2),

• P is ε-sufficient.
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First, we consider each node V si of the sample graph Gs as random variables
from the nodes of the population graph, V . Then we can apply the multinomial
sampling size analysis to estimate the proportion and the size of the induced
partition Ps := {P si }ki=1 on V s, where P si := {V sk ∈ V s : V sk ∈ Pi}

Lemma 3. For an arbitrary graph G and an equitable partition P on V , there
exists ns(γ, α, ε, n, k) such that: if k < α−1, then for all V s ⊂ V satisfying
|V s| > ns, we have with at least probability 1− γ,

• | |Pi|n −
|P si |
N | ≤ α,∀i ∈ {1, 2, ..., k},

• |P si | > ε|Pi|,∀i ∈ {1, 2, ..., k}.

Proof. Since P = {Pi}ki=1 is an equitable partition, by the uniformly random
sampling assumption, we have for each i ∈ {1, 2, ..., N}, V si is a multinomial
random variable. Therefore, we could approximate the sample size by normal
distribution: there exists n1(γ, α) such that, for any N > n1, we have

P{
k⋂
i=1

| |Pi|
n
− |P

s
i |
N
| < α} > 1− γ.

Now, let n2(ε, α, n, k) := εn
1−αk . It follows that, if we have N > max{n1, n2},

then

|P si | > N(
|Pi|
n
− α) = N(

1

k
− α) >

εnk
1
k − α

(
1

k
− α) = ε

n

k
= ε|Pi|,

where the two inequalities follow from N > n1 and N > n2, k < α−1 respec-
tively. Finally, let ns(γ, α, ε, n, k) := max{n1(γ, α), n2(ε, α, n, k)}, we are done.

Since an ε-regular or ε-sufficient P requires |P| to be large when ε is small,
the assumption k < α−1 may seem to be too strict an assumption. But it is
important to notice that n1(γ, α) is independent of |P|, and it grows slowly as
α goes to zero. That is, we can allow α to be extremely small while keeping
ns relatively small. Therefore, in the case of large dense sample networks, the
assumption k < α−1 can be easily satisfied.

Next, we want to show that if a partition is ε-regular on G, then the induced
partition on Gs also satisfies certain level of regularity.

Lemma 4. If P is an ε-regular partition w.r.t. G satisfying 1
ε < k < 1

α , and
Gs satisfies N > ns(γ, α, ε, n, k), where ns is defined as in lemma 1, then Ps is
[4( nN )2 + 2(1 + αk)2]ε-sufficient w.r.t. Gs with probability at least 1− γ.
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Proof. LetAs, Bs ⊂ V s be arbitrary, ∆(As, Bs) := E(As, Bs)−
∑
i

∑
j w

s
ij |Asi ||Bsj |.

We first consider As, Bs ⊂ V , then by the relationship between ε-regular and
ε-sufficient in (Frieze, Kannan), we have

|E(As, Bs)−
∑
i

∑
j

wij |Asi ||Bsj || < 4εn2.

It remains to prove that there exists an uniform bound for {|wij−wsij |}1≤i<j≤k.
But by the assumption that N > ns, we have from lemma 1, with probability
at least 1− γ,

|P si | > ε|Pi|,∀i ∈ {1, 2, ..., k}.

That, together with the assumption that P is an ε-regular partition, implies for
all but εks pairs of (i, j),

|
E(P si , P

s
j )

|P si ||P sj |
− wij | < ε.

Since wsij =
E(P si ,P

s
j )

|P si ||P sj |
, we have for all but εk2 pairs of (i, j), |wsij − wij | < ε.

Finally, we have

|∆Ps(As, Bs)| :=|E(As, Bs)−
∑
i

∑
j

wsij |Asi ||Bsj ||

≤|E(As, Bs)−
∑
i

∑
j

wij |Asi ||Bsj ||+
∑
i

∑
j

|wsij − wij ||Asi ||Bsj |

<4εn2 + 2εk2(
N

k
+ αN)2 = [4(

n

N
)2 + 2(1 + αk)2]εN2.

Therefore, Ps is [4( nN )2 + 2(1 + αk)2]ε-sufficient.

Now, for a partitionQs onGs, we define ∆QsPs(A
s, Bs) :=

∑q
i=1

∑q
j=1Q

s
ij |Asi ||Bsj |−∑k

i=1

∑k
j=1W

s
ij |Asi ||Bsj |, where Qsij :=

E(Asi ,B
s
j )

|Asi ||Bsj |
and E(Asi , B

s
j ) := {e(U, V ) :

e(U, V ) = 1, U ∈ Qsi , V ∈ Qsj}. Therefore, let ε′ := [4( nN )2 + 2(1 + α k
N )2]εwe

obtain the following corollary directly from lemma 2:

Corollary 1. For any ε-regular partition Qs on Gs, any As, Bs ⊂ V s,

|∆QsPs(As, Bs)| ≤ [4(
n

N
)2 + 2(1 + αk)2 + 4]εN2.
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Proof.

|∆QsPs(As, Bs)| ≤ |∆Qs(As, Bs)|+ |∆Ps(As, Bs)|
≤ 4εN2 + ε′N2.

The above corollary shows the closeness between the induced partition Ps on
Gs and any of the ε-sufficient partition Qs on Gs. In other words, any of the
ε-sufficient partition Qs provides a “good” estimation for the induced partition
on the sample graph. Now, since we have already shown above that the induced
partition is proportionally close to the original partition, under the assumption
of uniform random sampling, it is straightforward for one to conjecture that any
of the ε-regular partition Qs also provides accurate estimation for G.

Before the proof of theorem 1, we define a random graph G̃ := (Ṽ , Ẽ) and a
partition Q on Ṽ as the following:

• |Ṽ | = n,

• P{Ṽp ∈ Qi} =
|Qsi |
N , ∀i ∈ {1, 2, ..., n}, i ∈ {1, 2, ..., q := |Q|},

• Ṽp ⊥ Ṽq,∀i 6= j,

• P{e(Ṽp, Ṽq) = 1|Ṽp ∈ Qi, Ṽq ∈ Qj} = wsij ,∀i 6= j ∈ {1, 2, ..., q},

• (e(Ṽp, Ṽq) ⊥ e(Ṽa, Ṽb))|{Q(Ṽp),Q(Ṽq),Q(Ṽa),Q(Ṽb)} where Q(Ṽp) = Qi
such that Ṽp ∈ Qi.

One may notice that G̃ ∼ SBM(n, {Q
s}i
N , wsij) is generated by a stochastic block

model. We will explore more details in the next section. Now, we show the first
main result.

Theorem 1. Let G̃ be the random graph that is obtained by the procedure, where
|V s| ≥ ns(γ, α, ε, n, k), then for any A,B ⊂ V , there exists Ã, B̃ ⊂ Ṽ such that
with high probability, d�(G, G̃) < ε.

Proof. First, denote the number of edges in G̃ between Qi and Qj by Ẽ(Qi, Qj),
by the construction above, we have:

Qij :=
Ẽ(Qi, Qj)

|Qi||Qj |

=

∑n
p=1

∑n
q=1 1Qi(Ṽp)1Qj (Ṽq)e(Ṽp, Ṽq)∑n

p=1 1Qi(Ṽp)
∑n
q=1 1Qj (Ṽq)

.
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Now, Nij :=
∑n
p=1 1Qi(Ṽp)

∑n
q=1 1Qj (Ṽq), by independence between Ṽp and Ṽq,

∀p 6= q, we have that |Qi| is the sum of n i.i.d. binomial random variables for
all i ∈ {1, 2, ..., q}. Furthermore, for any fixed |Qi| = qi,∀i ∈ {1, 2, ..., q}, we
have

∑n
p=1

∑n
q=1 1Qi(Ṽp)1Qj (Ṽq)e(Ṽp, Ṽq) =

∑
Ṽp∈Qi

∑
Ṽq∈Qj e(Ṽp, Ṽq) is also

the sum of n2 i.i.d. binomial edge random variables as in the construction above,
where the independence comes from the conditional independence in construc-
tion. Therefore, for fixed |Qi| = qi,∀i, we have from Hoeffding’s inequality that
P{|Qij −Qsij | ≥ ε||Qi| = qi, |Qj | = qj} < 2 exp (−2qiqjε

2).

=⇒ P{
⋃
i,j

{|Qij −Qsij | ≥ ε||Qi| = qi, |Qj | = qj}} <
∑
i,j

2 exp (−2qiqjε
2)

=⇒ P{
⋂
i,j

{|Qij −Qsij | < ε||Qi| = qi, |Qj | = qj}} ≥ 1−
∑
i,j

2 exp (−2qiqjε
2)

Also, since n > N > ns(γ, α, ε, n, k) > n1(γ, α), we have

P{
q⋂
i=1

| |Qi|
n
− |Q

s
i |
N
| < α} >= 1− γ.

Now, let A,B ⊂ V be arbitrary, and assume without loss of generality that∑k
i=1

∑k
j=1 wij |Ai||Bj | >

∑q
i=1

∑q
j=1Qij |Ãi||B̃j |, it follows

|
k∑
i=1

k∑
j=1

wij |Ai||Bj | −
q∑
i=1

q∑
j=1

Qij |Ãi||B̃j ||

≤|∆PPs(A,B)|+ |
k∑
i=1

k∑
j=1

wsij |Ai||Bj | −
q∑
i=1

q∑
j=1

Qsij |Ãi||B̃j ||+ |∆QsQ(Ã, B̃)|,

where

• |∆PPs(A,B)| :=
∑k
i=1

∑k
j=1 |wij − wsij |Ai||Bj |

• |∆QsQ(A,B)| :=
∑q
i=1

∑q
j=1 |Qsij −Qij |Ãi||B̃j |

Now, if the condition |Qi| = qi, |Qj | = qj is satisfied, then with probability at

least 1 −
∑
i,j 2 exp (−2qiqjε

2),
∑q
i=1

∑q
j=1 |Qsij − Qij ||Ãi||B̃j | < εn2. But we

also have with probability at least 1 − γ, | |Q
s
i |
N − |Qi|n | < α,∀i ∈ {1, 2, ..., q}. It

follows with probability at least (1− γ)(1−
∑
i,j 2 exp (−2(nq − αn)2ε2)),

q∑
i=1

q∑
j=1

|Qsij −Qij ||Ãi||B̃j | ≤ε(
n

q
+ αn)2
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Similarly, we have:

k∑
i=1

k∑
j=1

|wij − wsij ||Ai||Bj | ≤(1− ε)k2ε(n
k

)2 + εk2(
n

k
)2

<2εn2.

It remains to bound
∑k
i=1

∑k
j=1 w

s
ij |Ai||Bj | −

∑q
i=1

∑q
j=1Q

s
ij |Ãi||B̃j |:

k∑
i=1

k∑
j=1

wsij |Ai||Bj | −
q∑
i=1

q∑
j=1

Qsij |Ãi||B̃j |

≤
k∑
i=1

k∑
j=1

wsij(|Asi |
n

N
+ αn)(|Bsj |

n

N
+ αn)−

q∑
i=1

q∑
j=1

Qsij(|Asi |
n

N
− αn)(|Bsj |

n

N
− αn)

≤(
n

N
)2|∆PsQs(Asi , Bsj )|+ α

n

N

k∑
i=1

k∑
j=1

(wsij +Qsij)(|Asi |+ |Bsj |) + αn2(

k∑
i=1

k∑
j=1

wsij −
q∑
i=1

q∑
j=1

Qsij)

It follows from corollary 1:

• |∆PsQs(Asi , Bsj )| ≤ [4( nN )2 + 2(1 + αk)2 + 4]εN2

• α n
N

∑k
i=1

∑k
j=1(wsij +Qsij)(|Asi |+ |Bsj |) ≤ α n

N 4N = 4αn

• αn2(
∑k
i=1

∑k
j=1 w

s
ij −

∑q
i=1

∑q
j=1Q

s
ij) ≤ 2α2n2(k + q)

Finally, we have with probability at least (1− γ)(1− 2 exp (−2(nq − αn)2ε2)),

|
k∑
i=1

k∑
j=1

wsij |Ai||Bj | −
q∑
i=1

q∑
j=1

Qsij |Ãi||B̃j ||

≤[4(
n

N
)2 + 2(1 + αk)2 + (

1

q
+ α)2 + 6]εn2 + 4αn+ 2α2n2(k + q).

In short, we showed that the input graph is well-approximated by the output
graph when considering the regular partition as encoder, the resulting random
multipartite graph as feature, and blow-up/lifting as decoder.
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3 Community Detection via Regular Partitions

In section 2, we give an estimation result about the closeness between the input
graph and the output graph when using a regular partition as an encoder. In this
section, we show that the ε-regular partitions give a partial community recovery
for symmetric stochastic block models. In particular, we first state the formal
definition of (Symmetric) Stochastic Block Models ((S)SBM), and show that
the ε-regular partitions solve the fundamental problem of community detection
in the study of SSBM with complex probability matrix under mild assumptions.

The idea of applying ε-regular partition to recover stochastic block model seems
straight-forward: since the lemma tells us that every large enough graph could
be well-approximated by a random graph, given a graph that is generated by
a SSBM, any implement of the algorithm should be able to give us a random
graph that is close to the graph and therefore to the SSBM. Unfortunately, be-
cause Szemeredi’s regularity lemma and its implement algorithms relies on the
index of partition as the objective function, the cardinality of an ε-regualr parti-
tion grows exponentially. That is, ε-regular partition tends to over-partition the
set of vertices and give more clusters than the original community number in
SSBM. Therefore, we use relative connectivity statistics to relabel the partitions
and thereby generate a partial recovery for the original communities, up to a
permutation on the community index.

Figure 1: A sample graph that is generated from a stochastic block model with
three communities.

Definition 1 (Stochastic Block Model (SBM)). The tri-tuple (n,p,W) is called
a stochatic black model, where

• n ∈ N;
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• p := {pi}ki=1, where pi ∈ [0, 1],∀i, and
∑k
i=1 pi = 1;

• W ∈ Rk×k, where Wij ∈ [0, 1],∀0 ≤ i, j ≤ k.

Definition 2 (Symmetric Stochastic Block Model (SSBM)). A SBM is called
symmetric if pi = 1

k ,∀i, and Wij = Wji,∀0 ≤ i < j ≤ k.

Any sample graph (X,G) ∼ (n, p,W ) can be considered as a random graph,
where X = {xi}ni=1 is a random n-dimensional vector with i.i.d. components
distributed under the probability vector p, and G := ([n], E) is a random simple
graph with P({Eij |xi, xj}) = Wxixj . Here, Eij := {(i, j), (j, i) ∈ E}.

Also, we denote the set of vertices that share the same label by Vi := {xi ∈ [n] :
xi = k}. it is clear from the definition that {Vi}ki=1 forms a partition of [n].

Now, given a SBM, we show that, for any two communities i, j, the edge density
between correctly clustered communities gives a consistent estimator for Wij by
the law of large number.

Proposition 1. Given a regular partition P on G, if Pi and Pj are correct

community recovery, then
e(Pi,Pj)
|Pi||Pj | is a consistent estimator for Wij.

Proof. For any fixed ε > 0, let PviPvj := {|Pi| = vi, |Pj | = vj}, we have the
following:

P({|e(Pi, Pj)
|Pi||Pj |

−Wij | ≥ ε})

=
∑
vi,vj

P({|
∑
i,j eij

vivj
−Wij | ≥ ε}|PviPvj)P(PviPvj)

≤ V ar(eij)

(pin− ε)(pjn− ε)ε2
+P({|vi

n
− pi| ≥ ε})

=
Wij(1−Wij)

(pin− ε)(pjn− ε)ε2
+P({|vi

n
− pi| ≥ ε}) −→ 0.

Here, the inequality follows from the conditional i.i.d. assumption of eij and the
correct cluster assumption, the second equality from the conditional Bernoulli
assumption of eij .

Notice that the assumption in the above lemma is strong, because it requires
algorithms to not only assign correct label to each sample vertex but also reveal
the correct number of communities. As shown below, regular partitions result
in correct labeling under mild assumptions, but tend to give more clusters than
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communities. Worse still, since the number of clusters usually grows with the
number of sample vertices, the law of large number type of argument used above
cannot be used directly if one want to prove similar consistency result above.

Therefore, we have the following sufficient condition for a regular partition to
give consistent estimator under the assumption of correct labeling rather than
assuming the partition gives the correct community recovery.

Lemma 5. Given a regular partition {Pi}K(n)
i=1 on G, if K = o(n) and Pi and

Pj are clustered correctly, i.e. ∃j ∈ [k], Pi∩Vj = Pi, then
e(Pi,Pj)
|Pi||Pj | is a consistent

estimator for Wij.

Proof. Similar to the proof above, we have:

P({|e(Pi, Pj)
|Pi||Pj |

−Wij | ≥ ε})

≤ Wij(1−Wij)

(pi
kn
K − ε)(pj

kn
K − ε)ε2

+P({|viK
nk
− pi| ≥ ε}) −→ 0.

Hence, we have shown that if the cardinality of a regular partition does not
grow as fast as the number of vertices, any correctly labeled pair of clusters
give us some information about the original SSBM probability matrix, w. The
question that naturally follows is when does a regular partition give correctly
labeled pair of clusters. It turns out that if a SBM is satisfies the condition
called ε-separability, then any regular pair of clusters gives an accurate labeling.

Definition 3. A SBM (n, p,W ) is called ε-separable if ∀(i, j) ∈ [k]2,∃k 6= i, j
such that pk|Wik −Wjk| > ε.

Intuitively, ε-separability allows us to characterize each of the community Vi by
the vector {pjWij}j , up to a permutation on index.

Now, we show that if a SSBM is ε-separable, then the regular partition with
none irregular pairs gives back the community up to ε mixture.

Lemma 6. Given an ε-regular partition {Pi}Ki=1 with zero irregular pairs of the
sample graph G that is generated by an 2ε-separable SSBM(n,p,w) with n large,
then we have:

• All of the Pi consists of vertices from the same community up to ε-mixture:
∀i ∈ [K],∃!j ∈ [k] such that |Pi ∩ Vj | > ε|Pi|.
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• ∀j ∈ [k],∃i ∈ [K], such that |Pi ∩ Vj | > ε|Pi|.

Proof. Assume we have an ε-regular partition {Pi}Ki=0 on G. We focus on the
K2 ε-regular pairs of (Pi, Pj)

′s.

Claim 1: Let A ⊂ Vi, B ⊂ Vj such that |A|, |B| > ε|P | for some P ∈ {Pi}Ki=0,
then by the 2ε-separability, ∃Vk such that pk|Wik −Wjk| > 2ε. Now, if ∃P ∗ ∈
{Pi}Ki=1\{P} such that |P ∗∩Vk| > ε|P ∗|, let C := P ∗∩Vk, we have by regularity

that | e(A,C)
|A||C| −

e(P,P∗)
|P ||P∗| | < ε, | e(B,C)

|B||C| −
e(P,P∗)
|P ||P∗| | < ε. This implies

|e(A,C)

|A||C|
− e(B,C)

|B||C|
| < 2ε.

But that contradicts the fact that

|e(A,C)

|A||C|
− e(B,C)

|B||C|
| −→ |Wik −Wjk| >

2ε

pk
≥ 2ε.

Finally, if @P ∗ ⊂ Vk such that |P ∗ ∩ Vk| > ε|V ∗|. Then,

|Vk| ≤ ε|Pi|,∀i ∈ {1, ...,K} =⇒ |Vk|
n
−→ pk < ε,

which contradicts pk >
2ε

|Wik−Wjk| > ε.

Claim 2: We prove by contradiction. Assume ∃i ∈ [k],∀j ∈ [K], |Vi∩Pj | < ε|Pj |,
then it follows

|Vi| < ε|V | =⇒ pi < ε =⇒ pi|Wji −Wki| < 2ε,∀j, k

contradicts the 2ε-separable assumption.

Therefore, combine Lemma 5 and Lemma 6, we see that a regular partition with-
out irregular pairs on any large enough graph generated by a SSBM indeed gives
us a partial recovery of the communities with high accuracy. In experiments,
we found the convergence rate of irregular pairs ratio to zero is particularly fast
for graphs with strong probabilistic connectivity patterns. That is, the assump-
tion K = o(n) in Lemma 5 and the non-irregular pair assumption in Lemma
6 can be easily satisfied in practice, provided that the graph indeed has clear
probabilistic connectivity pattern.

Finally, we propose an statistic characterization of the community label for
ε-separated SSBM based on the observations of the connectivity between the
nodes and the training data.

To state the second main result, we need the following definitions. By the results
of Lemma 6, we can define a map f : [K] → [k] such that for every i ∈ [K],
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f(i) ∈ [k] gives the unique index satisfying |Vf(i) ∩ Pi| > ε|Pi|. Notice the
map f is unique up to a permutation on [k]. In practice, one could use the
relative edge density among {Pi}Ki=1 to find the corresponding f(i). Thereby,
we define ∀i ∈ [k], Ii := f−1({i}) being the inverse image of {i} on [K], and
Ṽi :=

⋃
k∈Ii Pk,∀i ∈ [k] being the recovered communities.

Theorem 2. Given an 2ε-separated SSBM, a regular partition with none irreg-
ular pairs, and an arbitrary vertex v, we have:

k∏
i=1

1
{| |e({v},Ṽi)|

|Ṽi|
−Wji|<kε}

is a consistent estimator of the label indicator 1{v∈Vj} for all j ∈ [k].

Proof. Given the resulting recovered communities {Ṽi}ki=1, and any unlabeled
vertex v that is from the SSBM, we have:

| |e({v}, Ṽi)|
|Ṽi|

−Wji| = |
|e({v}, Ṽi \ Vi)|

|Ṽi|
+
|e({v}, Ṽi ∩ Vi)|
|Ṽi ∩ Vi|

|Ṽi ∩ Vi|
|Ṽi|

−Wji|.

From Lemma 6: ∀i ∈ [K],∃!j ∈ [k], such that |Pi ∩ Vj | > (1 − kε)|Pi|, we have
|e({v},Ṽi\Vi)|

|Ṽi|
∈ [0, kε] and |Ṽi∩Vi||Ṽi|

∈ (1− kε, 1] by the construction of {Ṽi}ki=1.

Now, if v ∈ Vj , then by the weak law of large number,

P({| |e({v}, Ṽi ∩ Vi)|
|Ṽi ∩ Vi|

−Wji| > δ}) −→ 0,∀δ > 0,∀i ∈ [k].

That together with the above uniform bounds further imply

P{| |e({v}, Ṽi)|
|Ṽi|

−Wji| ≤ kε} −→ 1,∀i ∈ [k].

On the other hand, if v ∈ Vk for some k 6= j, then by the 2ε-separable assump-
tion, ∃i∗ ∈ [k] such that 1

k |Wki∗ −Wji∗ | > 2ε. That together with the above
uniform bounds imply

P({| |e({v}, Ṽi
∗)|

|Ṽi∗ |
−Wji∗ | ≤ kε}) −→ 0.

Combine the results above, we obtain,

P({|1v∈Vj −
n∏
i=1

1
| |e({v},Ṽi)|

|Ṽi|
−Wji|≤kε

| > δ}) −→ 0,∀δ > 0.
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The above result gives us a reliable approach to assign community label to un-
labeled nodes based on their connectivity statistics with respect to the training
data. Thereby, we could predict any unobserved link given enough observations
on the relative nodes’ connectivity to the training data.

In conclusion, we have proved that any ε-regular partition on with none irreg-
ular pairs gives a partial recovery of the SSBM. Moreover, the a relabeling of
the elements in an ε-regular partition on the training data gives a consistent
estimator for the label indicator.

4 Feature Extraction and Link Prediction

Now, we start to propose algorithms for feature extraction and link prediction
by exploring the proved accuracy of the ε-regular partitions in community de-
tection. In particular, the regular partitions allows us to find the principal
components for the covariance matrix generated by the element-wise means on
the ambient feature data space. The principal components are considered ma-
jor latent features with the following reason: If there exists latent features that
induce the formation of such connectivity-based communities, it should explain
the variance on the covariance among different connectivity patterns. But in
the ε-regular partition case, difference in connectivity patterns are reflected in
difference in the communities. Therefore the principal components of covari-
ance matrix generated by community samples give the latent features. Finally,
since we proved that each element in the ε-regular partition is a cluster of data
points that share a similar connectivity pattern in the last section, the mean of
elements can be considered as typical samples from the respective communities.

After feature extraction, we take a further step to assume there exits some
parametrized kernel that give a proper graph embedding on the subspace spanned
by the extracted features. Therefore, we use the maximum-likelihood estimator
for link prediction purpose.

Now, we introduce Algorithm 1 below which extracts latent features from the
given relational data:

For example, on a three dimensional data space R3, where the first dimension
corresponds to age, the second corresponds to income, and the third to height. If
the PCA gives us back x1 = (1, 0, 0), x2 = (0, 1, 0), and the threshold vt = 0.95
is satisfied. Then the outcome infer that the relationship pattern in the rela-
tional data is generated by age and income.

In the case where relational data is indeed generated by feature vectors polluted
by noise, let µPi := 1

|Pi|
∑
v∈Pi v and Ṽ∗ denotes the labeled community contains

Pi we have the following result to prove the closeness between element-wise
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Algorithm 1: Latent Feature Extraction via Regular Partition

Input: (training data = (V,E), regularity threshold = rt, community
labeling accuracy threshold = ε, and variance explanation threshold =
vt);

Szemeredit Regularity Partition: G −→ ({Pi}Ki=1, rp);
if rp < rt then

print: not enough SBM pattern found with rt regularity percentage
requirement;

else
∀i ∈ [K], find the element mean µi := 1

|Pi|
∑
v∈Pi v;

find the covariance matrix Σ of {µi}Ki=1;

obtain p = minp{p :
∑p
i=1 λi∑d
i=1 λi

> vt} via SVD Σ = Udiag({λi})UT .;

find {ui}pi=1

end
Result: Latent Features: {ui}pi=1

means and feature vectors:

Lemma 7. If distinct communities in a 2ε-separated SBM is generated by dis-
tinct feature vectors but polluted by i.i.d. noise with zero mean in the ambient
space, then the almost sure limit lim ||µPi − v∗|| ≤ ε

∑
k 6=∗ ||v∗ − vk||.

Proof. Assume that communities are generated by {vi}ki=1, which are polluted
by i.i.d. noise e with E(e) = 0. Then by lemma 6, we have ∀Pi, |Pi \ V∗| ≤
(k − 1)ε|Pi| and

µPi =
K

n
(

∑
vi∈Pi∩V∗

(v∗ + ei) +
∑
k 6=∗

∑
vi∈Pi∩Vk

(vk + ei)).

Finally, it follows from the strong law of large number,

limn→∞||µPi − v∗|| ≤ lim
n→∞

||K
n

∑
i

ei||+ ε
∑
k 6=∗

||v∗ − vi||

= ε
∑
k 6=∗

||v∗ − vi||

Before introducing the proposed algorithm for link prediction, we first show that
an application of KL-divergence between the relational data and the proposed
metric relationship between data leads to an optimal graph embedding to the
data space.
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Given two discrete probability distributions p = {pi}Ki=1 and q = {qi}Ki=1, the
KL-divergence between p and q is defined as the following:

DKL(p||q) :=

K∑
i=1

pi log(
pi
qi

).

Intuitively, KL-divergence give a quantitative description for the difference be-

tween two probability distributions. In particular, DKL(p||q) = 0 ⇐⇒ p
d
= q.

We will use KL-divergence to measure the closeness between the given sam-
ple connectivity and the connectivity relationship induced by a parametrized
metric on the data subspace spanned by the extracted features. This method
is inspired by the non-linear low-dimensional data embedding method such as
t-SNE (Hinton and Roweis, 2002), which uses a the Gaussian kernel to approx-
imate the data manifold structure by diffusion process on the ambient space.

In our case, we use a parametrized kernel function σθ(µi, µj) to approximate
the relational manifold on the data space. Popular choices of σθ includes:

• Weighted l2 norm, ||µi − µj ||l2θ :=
∑d
k=1 θi(µi,k − µj,k)2 with θ ∈ Rd

non-negative,

• Bi-linear form 〈x, θy〉l2 with θ ∈ Rd×d symmetric.

In particular, for each µi, we use { e−σθ(µ̃i,µ̃j)∑K
j=1 e

−σθ(µ̃i,µ̃j)
}Kj=1, where µ̃i :=

∑p
k=1〈µi, uk〉l2uk,

to approximate the probability of a connection between µi and µj on the sub-
space spanned by the extracted features. Our goal is to find the maximum-
likelihood estimator for the empirical relation structure { wij∑

j wij
}Kj=1:

arg min
θ

K∑
i=1

DKL({ wij∑
j wij

}Kj=1||{
e−σθ(µ̃i,µ̃j)∑K
j=1 e

−σθ(µ̃i,µ̃j)
}Kj=1).

Now, we are ready to introduce algorithm 2 for link prediction.

Now, given any test data set {ti}ni=1, we first obtain the projection t̃i :=∑p
k=1〈ti, uk〉l2uk,∀i ∈ [n], and obtain the estimated probability of edges among

them by:

P({e(ti, tj) = 1}) =
exp (−σθ∗(t̃i, t̃j))∑
k exp (−σθ∗(t̃i, t̃k))

.

Therefore, one could use the generated probability model for link prediction.
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Algorithm 2: Link Prediction via Graph Embedding on Metric Data
Space

Input: (the empirical edge density between elements of a regular
partition = {Wij}i,j∈[K], the extracted latent features = {ui}pi=1

generated from the regular partition, the element-wise mean {µi}Ki=1, a
parametrized kernel function = σθ, termination threshold = ε);
Find µ̃i =

∑p
k=1〈µi, uk〉l2uk, which are the projection of µi onto the

subspace spanned by {ui}pi=1;

Let f(θ) :=
∑K
i=1DKL({ Wij∑

jWij
}Kj=1||{ e−σθ(µ̃i,µ̃j)∑K

j=1 e
−σθ(µ̃i,µ̃j)

}Kj=1);

Find θ∗ := argmin f(θ);
Result: the maximum-likelihood graph embedding kernel

d : span({ui}pi=1) −→ R
+ ∪ {0} defined by

d(x, y) := exp (σθ∗(x, y)),∀x, y ∈ span({ui}Pi=1)

Figure 2: The left is the original graph from SBM, the right is the output
weighted adjacency matrix from an ε-regular partition

5 Numerical Experiments

In this section, we show the numeric experiments on the application of regular
partitions to solve community detection and recovery.

In Figure 2, we use synthetic data generated by SBM:

(n = 784, p =


0.25
0.25
0.25
0.25

 ,W =


0 0.2 0.4 0.6

0.2 0 0.1 0.15
0.4 0.1 0 0.25
0.6 0.15 0.25 0

).

We have exact community recovery in this case. Since the data has been clus-
tered into four communities that are characterized by the edge density matrix
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Figure 3: The left is the original graph from (Traud, 2011), the right is the
output weighted adjacency matrix from an ε-regular partition.

Figure 4: An application of regular partition algorithm on the real Facebook
data only gives partial community recovery.

{Wi}4i=1, the ith row of W , as we proved in Theorem 2. Also, the algorithm
converges after 7 iterations and gives 0 irregular percentage.

In Figure 2, the left is the original data, which consists of eij ∈ {0, 1}. There-
fore, one cannot recover the original adjacency matrix after applying a permu-
tation on the index. The right is the output weighted adjacency matrix from
an ε-regular partition where eij ∈ {0, 0.2, 0.4, 0.6, 0.1, 0.15, 0.25}. Since each
community is characterized by the Wi’s, one could cluster the output weighted
adjacency matrix even if a permutation is applied on the vertex index.

In Figure 3, we use real Facebook relational data from (Traud, 2011). The graph
is relatively sparse. Still, an application of regular partition gives a partial re-
covery of the communities from the original adjacency matrix that is on the left.
Figure 4 shows the details: the random-connectivity pattern on the Facebook
relational data is not strong enough to generate an ε-regular partition, as the
irregular pair rate is around 1

6 . In other words, the K = o(n) assumption in
Lemma 5 is unlikely to be satisfied.

Therefore, the numeric results on both synthetic data and real data support
our theoretical guarantee results on community detection and recovery. Fur-
thermore, the experiment result also confirms our conjecture on fast conver-
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gence rate for algorithms generating regular partitions on graph with highly
structured random connectivity, despite the exponential tower-type bound of
partition cardinality with respect to the accuracy ε.

6 Conclusion

In this paper, we shed the light on the potential of applying Szemeredi’s regular-
ity partitions as a black box to solving community detection, feature extraction,
and link prediction problems.

In section 2, we show that, given an unknown large dense graph and its sample
subgraph under uniform sampling, the ε-regular partitions give accurate pattern
or information summery for the unknown graph. This estimation result suggests
that the regular partitions, as a random-connectivity pattern recognition tool,
can be robust to any noise that does not bring structural change. In the future
works, we hope to give a theoretical guarantee on the noise-robustness of the
ε-regular partitions.

In section 3, we proved that regular partitions give ε-mixture solution to commu-
nity detection when using benchmark graphs that are generated by 2ε-separable
symmetric stochastic black model. Community detection and recovery for stochas-
tic block models with complex probability matrix is a long-standing tough prob-
lem. Our theoretical guarantee result shows that ε-regular partition is an effi-
cient tool in solving the problems.

In section 4, we apply the good community detection and recovery result to
propose algorithms for feature extraction and link prediction. To extract la-
tent feature, we first use the element-wise means in the ε-regular partition as
sample data draw randomly from the unknown feature-induced communities,
then calculate the empirical covariance matrix of the element-wise means to,
and finally extract the leading principal components as latent features as the
subspace spanned by them tend to explain more of the variance in connectivity
pattern.

In section 5, we give experiment results on the community detection and . The
numerical results on community detection using synthetic data confirm our the-
oretical guarantee on recovering communities from SSBMs. Furthermore, the
experiment result also confirms our conjecture on fast convergence rate for al-
gorithms generating regular partitions on graph with highly structured random
connectivity, despite the exponential tower-type bound of partition cardinality
with respect to the accuracy ε.
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